\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CSE: CBCS) III-Semester Main Examinations, December-2017

Logic \& Switching Theory

Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Simplify the given function $\mathrm{f}=\left(\mathrm{A}+(\mathrm{BC})^{1}\right)^{1}\left(\mathrm{AB}{ }^{1}+\mathrm{ABC}\right)$
2. Determine the Sum of Minterms form for $F(x, y, z)=x^{1} y+z^{1}+x y z$
3. Implement EX-NOR gate using only NOR gates.
4. Implement the following Boolean function with NAND-NAND logic.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(0,1,3,5)$
5. Implement the following Boolean function using $4: 1$ multiplexer.
$F(A, B, C)=\sum(1,3,5,6)$
6. Design a combinational logic circuit with three input variables that will produce a logic1 output when more than one input variables are logic1.
7. Compare Synchronous \& Asynchronous Sequential Circuits.
8. Draw the logic diagram, logic symbol and Truth table of JK Flip flop.
9. Design a combinational circuit using ROM that accepts a 3-bit number and outputs a binary number equal to the square of the input number.
10. Draw the structure of PLA.

Part-B $(5 \times 10=50$ Marks $)$
11. a) Prove using De-Morgans theorem that XOR and XNOR are complement to each other.
b) Convert the following equation into the standard POS form.

$$
\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})\left(\mathrm{B}+\mathrm{C}^{\mathrm{l}}\right)
$$

12. a) Simplify the following function and find essential prime implicants.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=)=\sum \mathrm{m}(0,1,2,3,4,6,8,9,10,11)
$$

b) Implement $\mathrm{Y}=\mathrm{AC}+\mathrm{BC}+\mathrm{AB}+\mathrm{D}$ with NOR-NOR logic.
13. a) Design a 2 to 4 decoder using NOR gates only.
b) Design a circuit with three inputs $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ and 2 outputs (X, Y), where the outputs are the binary count of the number of "ON" (HIGH) inputs.
14. a) Design a sequence detector for the sequence 10110. Use JK Flip-Flop.
b) Show how a JK flip flop can be constructed using a T flip flop and other logic gates.
15. a) Derive the PLA program table for a combinational circuit that squares a 3-bit number. Minimize the number of product terms.
b) Construct a 128×8 ROM with four 32×8 ROM chips with an enable input, external connections and a decoder.
16. a) Find the complement of $\mathrm{f}=\mathrm{A}+\left[\left(\mathrm{B}+\mathrm{C}^{1}\right) \cdot \mathrm{D}+\mathrm{E}^{1}\right] \mathrm{F}$.
b) Express the following functions in sum of min terms and product of max terms.
i) $F(A, B, C)=1$
ii) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{AB}+\mathrm{C})(\mathrm{B}+\mathrm{AC})$
17. Answer any two of the following:
a) Explain the design procedure for combinational circuits.
b) Design a 3-bit UP/DOWN counter which counts up when the control signal $M=1$ and counts down when $\mathrm{M}=0$.
c) Write short notes on Programmable Array Logic.

